OPTICAL TRANSITION RADIATION DIAGNOSTICS FOR CHARGED PARTICLE BEAMS

Dr. Ralph Fiorito IREAP University of Maryland

USPAS June 20, 2008

What is Transition Radiation?

Definition: Radiation which occurs when charge moving at constant velocity crosses a boundary between media with different dielectric constants

- a) simple idea: Radiation from collapsing dipole formed by moving charge and its image
- b) more exact: Radiation formed by suddenly disappearing (LHS) and appearing (RHS) surface charge distribution as charge crosses boundary (femtosec time scale)
- c) virtual photon: Reflection and refraction of virtual photons of all frequencies picture (up to plasma frequency) at the interface

What is radiating? The image charge current (Important to remember)

Brief History of TR and TR beam diagnostics

- 1919 "Lilienfeld radiation" observed near anode of CRT's flat spectrum, unknown origin
- 1945 Tamm and Frank develop theory of TR
- 1959 Goldsmith and Jelley experimental verify TR in optical regime using 5 MeV protons
- 1960 Elridge, Ritchie and Ashley (ORNL), and others theoretically and experimentally study properties of optical TR, Bremsstrahlung and plasmon radiation from low energy (10's of keV) electrons
- 1960 Aitkin images far field angular pattern of OTR and uses it to measure beam energy
- 1970's Wartski, carefully examines OTR properties and develops OTR diagnostics for profiling and measuring energy of relativistic e beams; invents OTR interferometer, uses it to measure energy to 1% and shows that visibility of OTRI is sensitive to beam scattering
- 1980's Fiorito/Rule show that OTR and OTRI can be used to determine x and y rms emittances of relativistic electron beams; deliver their first paper on this subject: *"OTR Diagnostics for Intense Beams", at the Werner Brandt Workshop on Charge Penetration Phenomena in Materials, ORNL, 12-13 April, 1984*
- 1985 Bosser, et. al. use OTR to profile high energy (450 GeV) proton beams at CERN
- 1990's F/R devise optical transverse phase space mapping method using OTR
- 1990's Barry devises CTR interferometry technique to measure bunch length; Lihn proves out method experimentally, further developed by Sievers, Blum, Happek, Nakazato, Shibata; now a standard bunch length measurement technique
- 2000's Explosion of work on OTR, ODR diagnostics for relativistic beams; OTR becomes the gold "standard" imaging method for relativistic beams
 Scarpine, Lumpkin, et. al. revisit OTR to image 120 GeV proton beam
 Bravin, LeFevre (CLIC) and Feldman, Fiorito & Casey (UMER) use OTR to image low energy (10 80 keV) electron beams

Diagnostics of beam observables and resolutions using TR

Incoherent TR ($\lambda \ll$ **d)**

```
1-Near Field Imaging (spatial distribution)
size (x, y)
position (x, y) (offset)
spatial resolution (independent of energy and close
to diffraction limit of optics)
```

2-Far Field Imaging (angular distribution) divergence (x', y') [angular resolution < $0.01/\gamma$] trajectory angle (X',Y') [< $0.01/\gamma$] energy (average) and energy spread [<0.01]

Coherent TR ($\lambda \sim d$) (e.g. 1ps bunch : FIR-mm)

1- Spectra

bunch length + possibly longitudinal distribution

2- Angular Distribution

divergence, beam transverse size (possible) bunch length +possibly long. distrib.(new)

Non relativisitic OTR from 10 keV UMER electron beam ($\beta = 0.139$)

Time Resolved Beam Imaging with OTR and Gated ICCD Camera at UMER (10 keV, 20 mA)

OTR Interferometry beam emittance diagnostics for tune up operations

$$\frac{\mathrm{d}^{2}\mathrm{I}_{\mathrm{TOT}}}{\mathrm{d}\omega\mathrm{d}\Omega} = \left[\frac{\mathrm{e}^{2}}{\pi^{2}\mathrm{c}}\frac{\mathrm{\theta}^{2}}{(\gamma^{-2}+\mathrm{\theta}^{2})}\right]4\left|1-\mathrm{e}^{\mathrm{i}\phi}\right|,$$

where: $\phi = L/L_V$, (e-photon phase difference)

and: $L_{v} = (\lambda / \pi)(\gamma^{-2} + \theta^{2})^{-1}$ (vacuum coherence length)

Diagnostics

- Center of pattern measures trajectory angle of particle
- Visibility of OTRI measures beam divergence (and/or $\Delta E/E$)
- Radial Polarization of OTRI can be used to *separately* measure x' and y'
- Fringe position also measures beam energy (E)

Advantages of Optical Transition Radiation Interferometry (OTRI)

- 1. Single shot data acquisition for beam property measurements
- 2. Single position emittance monitoring
- 3. Ability to measure multiple beam components
- 4. Can be fitted with mesh front foil to access lower divergence beams i.e. ODR-OTRI
- 5. Ability of OTR to measure multiple beam parameters with high precision

Electron <u>Beam</u> OTRI

Jefferson Lab estimated beam parameters

- Energy = 115 MeV
- Energy spread ~ 2%
- Emittance ~ 5 mm-mrad 10 mm-mrad
- Rms Beam size at a waist ~ 0.1 mm

Effect of foil scattering and energy spread on OTRI negligible for JLAB

Interferometer Location at JLAB FEL

OPTICS Setup for OTR RMS Emittance Measurement

Nearfield Measurements at JLAB Show Two Components

Y waist λ =650nm

Y width (um)

	Wavelength	σ1 (μm)	σ2(μm)	# of pictures averaged
Χ	650 nm	134.39+/-1.38	380.09+/-5.61	10
Χ	450 nm	174.96+/-2.6	508.72+/-16.87	2
Y	650 nm	56.36+/59	410.67+/-10.95	10
Y	450 nm	49.43+/-1.01	380.45+/-14.81	3
X (y scan)	650 nm	46.17+/61	375.04+/-9.42	10
X (y scan)	450 nm	45.48+/-1.05	353.82+/-11.98	2

Farfield Measurements also show Two Components

Waist	λ	σ1 (mrad)	σ2 (mrad)	%Intensity σ1	%Intensity σ2	D(A)
Y	650 nm	0.54+/-0.01	2.3+/-0.1	68.9 %	31.1 %	3.23%
Y	450 nm	0.55+/-0.01	2.4+/-0.08	69.9%	30.1%	4.25%
Х	650 nm	0.43+/-0.01	1.37+/-0.08	67.1%	32.9%	5.42%
Х	450 nm	0.45+/-0.01	1.28+/-0.07	67.6%	32.4%	5.39%
X(y scan)	650 nm	0.49+/-0.01	1.59+/-0.08	67.1%	32.9%	5.18%
X(y scan)	450 nm	0.45+/-0.01	1.56+/-0.08	67.6%	32.4%	3.75%

Core-Halo RMS Emittance Measurements

$$\tilde{\varepsilon}_{x} = \left(\left\langle x^{2} \right\rangle \left\langle x^{2} \right\rangle - \left\langle xx^{2} \right\rangle^{2}\right)^{\frac{1}{2}}$$

At a beam waist

 $\tilde{\varepsilon}_x = x_{rms} x'_{rms}$

where:
$$x_{rms} = \sqrt{\langle x^2 \rangle}$$
, and $x'_{rms} = \sqrt{\langle x'^2 \rangle}$

Waist	λ	Core emittance (mm- mrad)	Halo emittance (mm- mrad)
Χ	650nm	13 +/43	117.2 +/- 7.72
X	450nm	17.7+/66	146.5 +/- 14.02
X (y scan)	650nm	5.1 +/17	134.2 +/- 10.11
X (y scan)	450nm	4.6 +/21	124.2 +/-10.57
Y	650nm	6.8 +/2	212.5 +/- 14.89
Y	450nm	6.0 +/23	205.4 +/- 14.85

Future Work

- Better determination of the beam waist
- Confirming the Halo-Core Model
- Optical Phase Space Mapping

OPTICAL DIFFRACTION-DIELECTRIC FOIL RADIATION INTERFEROMETRY EMITTANCE DIAGNOSTIC FOR INJECTOR

Radiation from dielectric foil

amplitude factor = 3.7thickness $9.03 \mu m$, refraction index 1.8.

First Phase Measurements: ANL AWA 14 MeV

Best fit parameters :

Beam energy = 13.7MeV, Foil spacing = 1.88mm, RMS angular divergence of the scattered fraction = 8.8mrad, RMS angular divergence of the unscatterd fraction = 1.23mrad.

RMS=0.96%

RMS=1.97%

Non Interceptive Bunch Length Diagnostics: Coherent TR, DR

$$\frac{d^{2}I}{d\omega d\Omega} = \frac{d^{2}I_{e}}{d\omega d\Omega} \{N + N(N-1)S_{\perp}(k_{\perp},\sigma_{T})S_{z}(\sigma_{z},k_{z})\}$$
$$S_{\perp,z} = \left|F(\rho_{\perp,z})\right|^{2}$$

If transverse and longitudinal bunch distributions $\rho_{\perp,z}$ are Gaussian and $\theta \sim \gamma^{-1} \ll 1$, $k_{\perp} \simeq k\theta \simeq k/\gamma$ and $k_z \simeq k$

$$S_{\perp} = |F(\rho_{\perp})|^{2} = \exp[-(\sigma_{r}k\theta)^{2}] \rightarrow \exp[-(\sigma_{r}/\gamma\lambda)^{2}] \sim 1$$
$$S_{z} = |F(\rho_{z})|^{2} = \exp[-(\sigma_{z}k)^{2}] \rightarrow \exp[-(\sigma_{z}/\lambda)^{2}]$$

Standard single shot autocorrelator pulse length diagnostic

(PSI Swiss Light Source Linac 100 MeV)

Novel Angular Distribution Bunch Length Diagnostic Method

(goals: simple, robust, low cost, high accuracy)

$$J(\omega, p) = \left| E(\omega, p) \right|^2$$

Frequency Dependent Projected AD

$$S_{z}(\omega) = \left| \int_{z_{1}}^{z_{2}} \rho(z) \exp(i\omega z/V) dz \right|^{2}$$

Bunch longitudinal form factor

Frequency integrated AD projected on plane

Angular distribution of CDR from Disk E=100 MeV

Angular Distributions

Vertical scan Y [mm]

Bunch Form factors and CDR spectrum

Proof of Principle Experiment at Paul Scherrer Institut's 100 MeV LINAC

Single Gaussian beam bunch fitted parameters

Method	Tune	T(ps)
AD CTR/CDR	PBU-0	0.7
E-O technique	PBU-0	0.75
AD CTR/CDR	PBU+3	1.0
E-O technique	PBU+3	1.0